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SECTION I. INTRODUCTION

The need for analyzing images of the earth taken from

high and low altitude aircraft is greatly increasing. The

purposes of the photographs are diverse and include:

. Navigational aid

. Geographic map making

• Natural resources analysis

. Weather prediction

Typically, a sequence of images is taken at different times

with different sensors. A basic problem in the analysis of these

images arises when it is desired to locate the same region in

a pair of dissimilar images of the same field of view. For

example, one may wish to locate a feature in both optical and

radar images of a scene in order to verify the accuracy of the

radar sensor or locate a feature in two optical images taken

under different weather conditions in order to study the changes.

This general problem is called map matching. Special cases of

this problem are image registration, change detection, stereometric

analysis, and multispectral image analysis.

Several methods including photographic techniques such as

image subtraction, optical techniques such as optical correlation

and digital computer techniques may be used to approach the

map matching problem. In this report only computer imaging

techniques will be considered. The versatility, reliability, and

economical feasibility of these techniques have produced the trend

of these methods for all application areas.
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Several noteworthy approaches to the map matching pro-

blem have been proposed. These include the standard correlation

detector as well as highly efficient sequential techniques. These

methods and techniques together with an analysis of their perfor-

mance are described in the next section. The results of this

evaluation indicate that although some of the 'ethods are partially

successful, further research is needed to accomplish the difficult

task of map matching in an efficient manner.

The type imagery encountered in map matching is varied and

may include optical, radar, radiometric or multispectral images.

A typical optical image is shown in Figure 1, and the correspond-

ing side looking radar image is shown in Figure 2. Note that

although each of these images shows siqnificant scene detail, the

two sensors respond differently to the same feature. Most noti-

ceable is the intensity reversal of roads which appear white in

the optical and dark in the radar image. Upon careful study one

may also note a nonlinear geometric distortion between the two

images as well as scale changes. The appearance of bright "glint"

features in the radar image may also be noted. These features

are not visible in the optical images. Forest regions present

texture patterns in both optical and radar images with a shift

or reversal of intensity. Urban structures such as buildings

do not appear in great detail in the radar images but shadowing

effects are apparent in the radar images. The predominant simi-

lar features in both optical and radar images are shapes of cer-

tain features such as roads, forest boundaries and land-water

boundaries. Furthermore, these shapes remain recognizable

2



even after some degree of degradations in resolution, intensity,

geometry or weather. Thus, it may be expected that structural

features will be important in map matching.

f
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1.1 PROBLEM STATEMENT AND BACKGROUND OF PREVIOUS WORK

Let two images, S the search, and W the window, be as

shown in Figure 3. S is taken as an MxN array of digital

picture elements which assume one of K gray levels:

0 < S(m,n) < K- 1

1< M < M

< n < N.

W is taken as a JxK array of digital picture elements

(with J < M and K < N) having one of Q gray levels:

0 < W(j,k) < Q - 1

l < j < j

1 < k < K.

When W is superimposed on S, the position of the upper left hand

corner of W is used as a reference point in identifying the

position of W in the search area coordinates. Therefore, when

W is located at (u,v), a picture element S(i,j) in S is super-

imposed by a picture element W(i-u,j-v) in W.

In the physical world, S may represent a high-resolution

optical picture taken by an air-borne camera at high altitude.

This is as depicted in Figure 4. W may represent an image taken

by:

. The same sensor at a different time and look angle

. A difference sensor such as a side-looking radar at

a lower altitude

6
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optical imaging

side-looking radar

FIGURE 4. GENERAL GEOMETRY OF THE OPTICAL AND RADAR IMAGING SYSTEMS

8



9

The basic problem is that given an object terrain as

represented by W, we wish to determine by the use of a digital

computer whether the same object terrain appears in S.

A number of researches have been made to develop methods

of detecting local similarity and perform image matching. Some

of the more promising ones are:

Basic correlator

Statistical correlator

* Sequential correlator

Sequential template matching

In the following sections, each of these methods is briefly

described and their relative performances are analyzed.

1.1.1 Basic Correlator

The basic correlation is a method used to form a correlation

measure between two picture functions and to determine the

location of the maximum correlation [1], [2]. In applying this

technique, the correlation measure R(u,v) at the reference

location (u,v) is defined as:

K J
R F ~(ij)w(i-u, j-v)

R (u, v) = j=l i=1

-'j~ =1- j=l i=1

For a given window W, the term .. W 2(i-u,j-v) in Equation (1) is
iis



10

a constant for any reference point u,v. Therefore Equation (1)

can be reduced to:

K jFF S([, j)W(i-u, j-W

R(uKv) K i= 2
FFS (i.0j

[j=l i=l1 [ j )  Z

To determine the location of maximum correlation, R(u,v)

must be computed at each location u,v; 1 < U < (M-J+1), 1 < V <

(N-K-l). This is because no decision can be made until the

correlation array R(u,v) is computed for all u,v. The perfor-

mances of this correlator can be described as follows:

(1) This method is relatively sensitive to image noise [3].

In the presence of image noise, the correlation function pro-

duces a relatively broad peak, thus making a selection of a

correlation peak difficult.

(2) A great amount of computation must be performed since

the window and search areas are usually large in an actual

photograph. With this technique no decision can be made until

the correlation array R(u,v) is computed for all u,v.

(3) With the exception to the matching of every simple

pictures this method and the variations of this method [4], [5]

does not provide satisfactory performance in image matching.

1.1.2 Statistical Correlation

To overcome some of the difficulties mentioned in the

previous method, the statistical knowledge of the spatial relation

of picture elements within each image were used in this statistical



correlation [6]. The statistical correlation measure R (u,v) is:

K J
F F (i, j)Fw(i-u, j-v)

Rs (U,V) K . =K; iK K
23 2F(i,j2 D 3 2F (i, )d

=l i=1 j=1 "=1

where F (i,j) and F (i,j) are obtained by spatially convolving

the images S(i,j) and W(i,j) with spatial filter functions D (ij)

and Dw(i, 9 ) :

Fs(i, j)-S(i, j) 0 Ds 01 D. (4)

F (i,j) = W(i,j) 0 D (i,j)... (5)

The spatial filter functions Ds (i,j) and Dw (i,j) are chosen

to maximize the correlation peak. The first step in the spatial

filter design is to decorrelate or whiten the images as follows:

A~ [H S 1 S(6)

B = [Hw1-W (7)

S and W are column vector representations of the images S(i,j)
and W(i,j) obtained by column scanning the images. Hs and Hw are

obtained by a factorization of the image covariance matrices

Ks = Hs HT (8)

Kw = HwHT (9)w w

H and Hw may be formulated in terms of the eigenvector and

eigenvalues of K and K as follows:s w

Ks =EsAsET (EsAs(EsA

S = 5 S S 88 (10)
H1T
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Kw  Ew A w = (EwAw ) (E wAw )

T=H H w1)

The correlation operation is performed on the whitened

vectors A and B to yield the statistical correlation measure.

R (u,v) ATB (12)
(ATA) TB)

or
(K) W sTw

R (u, v) IsKr) sT T T" (13)
s\* 4 SI [(KI) S1W W1

where

(KT)-  (HsT-l (14)

If the image elements are assumed to be samples of Markov

process then:

- -0 o ... 0

-I 2 -_1 _p -1

(K T)-1 K 1 -p (l+P )E- 0 ... 0=K -  l /(l-p

0 -PE-1 (i+2 -)E 1 -1(ip E -pEC ... O0

o . °1

(15)

where

correlation between adjacent image elements

.1W
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1 -p 0 0... 0

-p (G+p2 ) -p 0 . . . (
o -p o •0

0 . 1

Multiplying S by the (KT)l is equivalent to convolving the

image S(i,j) with the spatial filter function D(i,j).

0 0 0 0 0

2 2 2
0 p -p(1+p ) p 0

D(i,j) 0 -p(l+p z  ( 2) p (17)

(l+P ) p(l+p 0 (7

0 2 -P(I+p 2 ) 2

o 0 0 0 0

and Equation (4) and (5) become

Fs(i, j )  = S(i,j) 0 D(i,j) (18)

F (i,j) = W(i,j) 0 D(i,j) ... (19)

w

Performance of this correlator can be described as follows:

(1) Experiments performed on selected images indicated that

the statistical method does provide better performance in terms of

providing a sharper peak at the location of image matching. In

order for the method to work well, prior knowledge of the picture

statistics is required. In an actual situation, this information is
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either not available or extensive computations are required so that

the correlator can be re-designed to tailor to the input data.

(2) It is anticipated that performance of this correlator

would be worse than that of the basic correlator if the statistics

of the input data differ from statistics used in the design of the

correlator.

(3) Because of extra convolution steps needed in this method,

the amount of computations needed by this method is even more than

that needed for the basic correlator. It remains to show that the

improvement in performance is worth the extra cost in computations.

1.1.3 Sequential Correlator

A common criticism of both the basic and statistical correlators

is the great amount of computations that must be performed. A

method of sequential correlation has been proposed [7] to reduce

the computation time. The basic form of this algorithm is simple.

An error function is defined as follows:

K J
6(u,v) = j i IS(ij)-W(i-u,j-v)I .... (20)

j=l i=l

Instead of testing each of the elements in the window area,

elements of the area are selected at random. The error is accumu-

lated for as each of the elements is compared. If the error exceeds

a predetermined threshold value before all the elements in the

window area are tested, the test is considered failed for the window

(u,v) and a new window is tested. The test procedure is depicted
in Figure 5. Curves A, B, and C depict the cumulative errors for

three different reference points. A and B accumulate errors rapidly

* *-
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and the tests terminate early. Curve C, however, accumulates

error more slowly. It is therefore, much more likely to be a

candidate as a matching point. Theoretical analyses and simulation

tests [7] indicated that a saving of computation time of at least

two orders of magnitude is possible. As with the other two

correlation methods mentioned earlier, only very simply structured

images were processed successfully by this new approach.

1.1.4 Sequential Template Matching

Extending the basic concept described in 1.2.3 a more compli-

cated sequential detecting method was proposed [8]. Local

similarity between a set of templates is matched to a given image.

Instead of matching each template of a set to an image at every

location, the templates are partitioned and a representative

template is defined for each of the partitions. Several levels

of partitions are defined. Elimination of mismatching locations

and termination of computation can take place at each level of

detection. Each level of testing is over a more restrictive

subset of template class than the previous level. Matching process

terminates when the accumulative template matching error exceeds

a threshold level. A location which has gone through successive

levels of matching without rejection is declared a likely candidate.

The performance of the sequential template matching, method can be

described as follows:

1. Computation time is reduced due to the sequential method

of testing. In matching a real image, several hundreds of tem-

plates are needed, thus making the task of template partition difficult.

2. In a sequential testing, the ordering of the features is

important. Essential features (such as roads, rivers, etc.) must
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appear in both images in order to be considered as a match.

Methods of ordering features have not yet been developed.

I-
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1.2 OUTLINE OF REPORT

Two general approaches to map matching may be differentiated.

The first approach may be called a pictorial method and generally

involves a transformation of one image into a new image which

corresponds to the reference image. The second approach may be

called a feature method of the emphasis is placed on the second

more robust method.

The pictorial method is developed in Section II. Transfor-

mations for matching map from different sensors and geometrics

are analyzed. Examples of perspective transformations are given

for optical, radiometric, and radar images. A sensor transfor-

mation based upon a statistical matching of corresponding image

points is also presented.

The use of edge features for map matching is described in

Section III. A new orthogonal decomposition in terms of point,

edge, line, and other basis vectors is presented. The advantage

of this representation in a lncal. region. Map matching using

edge features also permits high speed logical similarity mea-

surement. The number of computations using this technique is

especially attractive for real time implementations. The use of

edge features for map matching is also demonstrated. In the ab-

sence of geometric and sensor distortions, the method works well

as indicated by the results of the experiments on matching an edge

image to a noise-corrupted version of the same-image. For optical

to radar matching, the performance is somewhat degraded but can

be improved using geometric and sensor intensity corrections as

well as data pre-processing-
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The theory of invariants is reviewed in Section. The

study of alqebraic invariants is an important field of mathe-

matics and several results of this theory are summarized.

The concept of perceptual invariants has also been studied

for the visual system. Several invariant properties of the

visual system are presented and a simple device which produces

invariant measurements is described. The use of spatial mo-

ments for invariant measurements is described in Section 4.3.

A powerful theorem which relates moment invariants to alge-

braic invariants for continuous functions i.- stated. New

results indicating a degree of variance in the invariant

measurements for discrete functions are presented. Examples

are given which also illustrate that the magnitude of the

variance can be controlled by careful processing.

Sequential techniques for searching for matching image

locations are presented in Section V. These methods promise

logarithmic efficiency over conventional correlation techni-

ques. Zoom techniques are an important special case of the

sequential techniques and are considered in detail. The

effects of reqion size and resolution limitations are con-

sidered and demonstrated by several examples. Finally, recom-

mendations for future work in map matching are given in

Section VI.
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optical imaging

side-looking radar

FIGURE 6. GENERAL GEOMETRY OF THE OPTICAL AND RADAR IMAGING SYSTEMS
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SECTION II. TRANSFORMATIONS FOR MAP MATCHING

2.1 GEOMETRIC TRANSFORMATIONS

In this section, methods of registration of the optical

and radar images are described. Figure 6 shows the general

geometry of the optical and radar imaging systems together

with an object terrain of interest. In this figure, the

optical system is assumed pointing at the nadir and the radar

system is scanning the same object terrain at a slant range.

Figure 7(a) depicts a rectangular array of diaitized pixels

of the optical image. Figure 7(b) represents the rectili-

nearly digitized radar image plotted in the optical image

coordinates. Point (x,y) in the optical image and point (x,

y) in the radar image represent an image of the same object

point in the terrain of interest. The basic transformation

consists of deforming the radar image so that its features

correspond as closely as possible to those in the optical

image.

Three methods of transformations were studied. These

are: Perspective Transformation

Polynomial Estimate

Interactive Nonlinear Transformation

2.1.1 Perspective Transformation

The general geometry of the optical imaging system is

shown in Figure 8. In this figure, the object (ground)

plane is assumed to be parallel to the image plane. The
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optical axes is perpendicular to both planes and the en-

trance pupil of the camera is located at the origin of a

rectanqular coordinate system. From the lens law of geo-

metrical optics, the object distance u3  and image distance

x 3 are related by:

1 +1 _1 1

u-- 3  x3  f

where f is the optical system focal length. Since the

object distance is larqe conpared to f, the image plane is

the fc>dl plane and x3 = f. Any object point u' =(u I ,
U t

u2 1 3 1 ) is imaged into a point x = (xI, x2, x3) in the

focal planes. The components of x can be computed by the

following equations:

X I f" U' (2)

u's
3

X fz 2" U (3)

U3
3

X i (4)

The geometry of the radar imaging system is shown in

Figure 9. In this geometry the radar image plane is

assumed to be rotated 0, e and 0 in the pitch, roll and yaw

axes. Therefore, the orientation of the radar system is

specified by the angles of rotation 8, e and 4,. An object

with a ground coordinates u = (uI , 112F u 3) in the radar
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imaging system can be related to the old coordinates u' =

(uj, u , u;) in the optical imaging system by the matrix

equation

U' = Mu (5)

where M is the product of three rotational transformation

matrices:

0 0o

M1 0 cos rp sin cp (6)
1 -sin c cos q p

Cos 0 sin
= 0 0

sin 0 cos
Cos 0 sinO 010

M (9)
-si cos 00

0 0

Successive rotations in a pointing sequence can be

defined by M which is the product of thr three matrices

(6), (7), and (8). A list of these product matrices for

all six permutations of l-, 2-, and 3- axis are:

[(cos 0 cos ~)(cos 0 sin 0 sin p~g + sin 0 Cos" Ca~ (cos 0 sin 0 cos Cp + sin OsinpiI
rn 1 2 3 = (sin 0 cos ) (cos 0 cos Cp + sin Osin 0 sin cp) (sin 0 sin P cos cp - cos Osinop)s

L (-sin 3)(Cos 0 sin p)(Cos P Cos eP)J[(cos 0 Cos 0) (sin P sin cp- sin 0 Cos P cos cp) (sin 0 cos sincp+ sin P cosce

n 132 (sin 0) (cos 0 cos CP) (-cos 0 sin ep)

(-cos Osin ) (sin 8sin cos cp+cos 8sin cp) (cos cos cp-sinsin sin :)
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[(cos 1 cos 6 -sin P sin 8 sin cp) (-sin 6 cos ep) (sin { cos e +cos 0 sin8 sincp)

m 2 l 3 = 2 (sin cos 0 sin cp + cos P sin 0) (cos 0 cos cp) (sin sinG -cos 0cos 8 sinp)

L (-sin 0 cos cp) (sin 0) (cos 8 cos CP)

V( (Cos 8 Cos )(-sin 8) (cos 8 sin

m 231 (sinOcos cosp+sin sincp) (cos0coscp) (sinOSin coscp-cospsincp)

(sinG cos 8 sincp - sin cos cp) (cos 0 sinp) (cos 8 cos cp+ sin8 sin sincp)

(cos~cosP+sin0sin3sinp) (cososinPsincp+sine.nin8) (sinpcoscP)1

M 312 (sin 0 Cos Cp) (Cos 8 Cos ep) (-sin cp)(-sincp)

Usin 0 cos P sincp -cos 0 sin P) (cos 0 cos P sincp + sin 0 sin 0) (cos 0 cos )J

F (cos 0 Cos (-sine cos 6) (sin ) 1
m 3 2 1 = (sin 0 cos cp + cos 0 sin 0 sinp) (cos 6 cos cp - sine sin P sincp) (-cos 0 sin )

(sin 0 sincp - cos 8sin P cos ca (sin 0sin P cos p + cos 0 sincp) (cos 0 cos P)3

The matrices (6), (7) and (8) and their products M (in

any order) are orthonormal, nonsingular, and have unity deter-

minates. These properties imply that the transform in (5)

can be inverted as:

u =M " u (9)

Substituting (5) into (2), (3) and (4) yields:

x 1 CI (Ul u2 u 3) =f " rn ll +mM1  2u + m 13 U3  (10)

Mn31 u I + m32 u2 + M33 u3

-1

x 2 C (u ,u Z  u3 ) f m 2 1 uI + m 2 2 u +m 2 3 u 3  (

M 3s1 u I + m 3 2 u + m 3 3 u 3
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x = C3 1 (u1 , u2 , u3) f (12)

where mij are the elements of the product matrix M.

Let the radar imaging system be located at an altitude

h. Substituting h for u3 in Equations (10, (11) and (12),

we have:

X= C (Ul u2 ) = r u1 + Mln u2 +M 3 h
1 1 2 1 1 1 2 3  (13)

31 1 32 3  33

2 = C1 (u, u2) = 2 1 u+m 2 2 u 2 + m2 h

mi3 1 u1 + m 32 u 2 + m 3 3 h (14)

- C (u, u)- (15)

In the case that the side looking radar is tilted at an

angle 8 and 6 e = 0, equations (13) and (14) become:

-u1 cos 0+hsin

1 uI sin 0 + h cosP (16)

-fu
2

x2 u I sin 0 + hcos
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Given the grid points (ul, u9 ) in the object plane

coordinates, Equations (13) - (17) can be used to compute the

corresponding points (xl, x2) in the radar imaging system

coordinates. In a quantized system, the computed coordi-

nate points do not generally fall on the grid points in the

radar image. So it is necessary to adapt rules for picking

the appropriate element out of the radar image. The easiest

method is to simply pick out the value of the nearest neigh-

bor to the computed grid point. This method works well when

the geometric distortion is not severe and when the x and u

grids are about the same size. A second method is to take

the average (possibly weighted average) of the neighbor ele-

ments. A third and more complicated method is to use inter-

polating polynomials as a means of computing values of the

elements between points of known values.

2.1.2 Polynomial Estimate

Let the optical image intensity be given by f(uI , u2)

and the radar image intensity be given by f(xl, x2 ). A

technique can be used to map the radar image into the

optical image using the following equations:

X= 1 (Ulf u2 ) (18)

x = g2 (u, u) (19)

g, and g2 can be approximated by a polynomial in uI and u2

of degree N as:

N N-i
X= Clj 12 (20)

i-o j-0
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N-iiiCz (Ul z r (21)
i=o j=0

where kli j and k2i j are the constant polynomial coefficients.

For most practical cases, a second degree (N = 2) approxi-

mation is adequate. This has been verified by experi-

ments[9] (on data from side look radar iamges) in which it

was found that the decrease in rms error as a function of

increasing polynomial terms is not significant for N greater

than 2.

The coefficients of Equations (20) and (21) can be

computed by fitting the two dimensional functions to a set

of f(uI, u2 ) and f(xI, x2 ) values. The linear - least -

squares estimate procedure can be used to express C1 (Ul, u2 )

surfaces by polynomials whose squared distances from the

true surface is a minimum. To obtain the coefficients, pro-

minent features that appeared in both the optical and radar

images are selected. These prominent features can be:

End points of a long edge

• Intersection of two lines

Corners of detected squares

* Distinguishable points on the boundary of

texture region

For a second degree (N = 2) approximation, at least six

pairs of conjugate points are needed. The values of these
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points can be arranged in the following manner:

I1 u u - v ul u z . "o 00
)C 2211

3 k
lX 3 101 (2

k 120. 22

I.. k 10 2
V klIn

Where R > 6.

A similar equation exists for x 2 and k i-Both of these

may be written in matrix notation as:

= UK 1  (23)

2= U K2  (24)

Using the linear - least - squares estimate theory,

the best estimate for Ks1 and K2 are given by the pseudo

inverse solution:

K1  = U T1  (25)

K2 = (UTU) U 2  (26)

2.1.3 Interactive Nonlinear Transformation

In this section, a method of removing spatial distor-

tion in the radar image with respect to the optical image

is described. This method, which was first described by
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Ulstad [10] is currently being studied as a possible method

of removing geometric distortion by a nonlinear spatial

transformation.

The spatial registration system is shown in Figure 10.

The two sets of image data are sequentially available as

columns of matrices X and U each with L rows. The L-element

column vectors of X and U are processed by the system in

order to produce a third L-element column vector R. The L

elements of the comumn of U map into L corresponding points

in X based on the following equation.

u(i,k) = x[i + 6 (i,k), k + a (i,k)] (27)

The quantities 8(i,k) and a(i,k) are real scalar cor-

rection factors are functions of the indices N and k.

As shown in Figure 11, use is made of N submatrices

defined in U. Submatrix Un consists of 2 p rows labeled

sn - p through sn + p where 1 < n < N, p is an integer and

S = L (28)

Let the N index points (an b n ) in Matrix X be such

that:

U(sn,k) = X(an, b n ), (29)

The points (a n , b n ) in X correspond to the middle row

of the nth submatrix U at the kth column. The points will

be used as the corner points of a piecewise linear synthetic

scan line in the transformation. In determining (an, bn)

during the processing of the kth column, correlations of
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transformed location of

column k

spatially transformed
rlocation of submatrix 1radar image X

-- " spatially transformed

location of submatrix N

k

--- submatrix 1

optical image U

Isubmatrix N

FIGURE 10. SPATIAL REGISTRATION

6a-
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optical image U c

FIGURE 11. INTERACTIVE TRANSFORM SYSTEM
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R(i,k) of matrix R and U(i,k) of matrix U are made for i,

in ranging from sn-p to sn+p. The results of these corre-

lations is then used to compute a new corner point (an +

Aan, b + Ab ) The corner point with the updated value cann n n

then be used to produce the (k+l)th column of the R matrix.

This orocess continues until an entire matrix R is produced.

2.1.4 Results

The polynomial method is preferred over the perspective

transformation. Perspective transformation requires tracking

and ephemeris data to determine the positions of the sensors

at the time of exposure. These data are often not avail-

able. In the polynomial method, data needed for the trans-

formation are entirely contained in the images.

Figures 12, 13 and 14 show the results of qeomnetric

distortion corrections by the method discussed in Section

'( 2.1.2. Figure 12 shows the various possible degrees of

corrections. Figure 13 shows a radiometric and an optical

picture. Geometric transformation was performed on the

optical picture in order to match the radiometric picture.

Corrections were concentrated on matching the three straight

roads. A total of eight reference points from each of the

two original pictures was used for the transformation.

Figure 14 shows two pictures taken by two different sensors,

an optical camera and a radar, at different look angles.

The transformation is made on the optical image so that it

can be geometrically in registration with the radar image.
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For this transformation, a total of twelve reference points

from each of the two original images is used to form based

for a pseudo-inverse transformation. As shown in Figure 14

(d), a nearly perfect registration was obtained.

.4

"iI
!I

r.
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2.2 Sensor Transformation

Because of the differences in operating characteristics

of the two sensors, images of the same object taken by the

optical system and the radar system will have different in-

tensity profiles. The most prominent difference is that the

optical image is positive while the radar image is negative.

In this section, methods of intensity transformation are

described. These methods consist of transforming the radar

image so that its intensity profile matches as closely as

possible to that of the optical image. The two methods

studied are:

• Intensity Equalization using Karhunen-Loeve Trans-

form

• Equalization using Intensity Averaging

2.2.1 Intensity Reversal

As the first step in the intensity transformation, the

negative radar image is transformed into a positive image.

This is done by replacing the amplitude of each picture

element eij by its complementing value eij" For an image

which has been digitized with n bits:

e = -e. - 1 (30)

where 2 n is the number of quantization level. Figure 14(a)

shows the original radar image. An intensity reversal is

performed on this image by applying Equation(30). The result

is shown in Figure 15(a). It can be seen that the contrast

of the image is low and intensity modification must be per-

formed so that its intensity profile matches as closely as
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possible to that of the optical image shown in Figure 15(b).

* I

.. .. . ,



(a) Radar Image (b) Optical Image
Intensity Reversed

AOlt

(c) Intensity Trans formation Wd Intensity Trans formation
(Karhunen-Loeve Trans form) (Averaging)

Figure 15. Intensity Transformation
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2.2.2 Intensity Equalization Using Karhunen-Loeve Transform

A two-dimensional image intensity function f(xI , x2 )

can be constructed as follows:

f(xl, x2 ) = n (31)

where

xI = Intensity level of the picture element in the

radar image,

v n0 <x <2 -1

x = Intensity level of the picture element in the

optical image,

0 <_x 2 n -

n = The numbers of picture elements which have inten-

sity level of x in the radar image and the inten-

sity level of x2 in the optical image.

A covariance matrix E is then formed to indicate the

relative intensity correlation between the two images as

follows:

T (32)
x =E(x 1 -M)(X 2 - Mxz)

where

Mxl = Expected values of X,

Mx2 = Expected values of ×2

A Karhunen-Loeve transform can then he nerformed to

obtain a new set of coordinates Ol and as follows:

T
E = A (33)
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where A = Diagonal matrix with the eigenvalues Xi of E as the diagonal
1 x

elements

qp= Matrix whose columns are the ordered eigenvectors of E
= [I ' P ]  fr X I X 2 (34) X

The transformed coordinates i andO 2 are shown in

Figure 16. Based on i and 2 intensity corrections can now

be made by scaling the intensity profile of the radar image

such that the resulting coordinates i and 2 are orthogonal

and the angle between 0i and the f - axis is approximately1 1

45 degrees.

Figure 17 shows a three-dimensional plot of the resul-

ting intensity transformation. It can be seen from this

figure that both images have approximately the same numbers

of picture elements at each intensity level. Figure 15(c)

shows the resulting transformed radar image. In this

figure, considerable details which are not visible in the

original radar image have been made visible by the inten-

sity transformation.

2.2.3 Intensity Equation Equalization by Intensity Averaging

The intensity transformation method described in Section

2.2.2 can be modified such that the average intensity of the

transformed radar image is made approximately equal to the

average intensity of the optical imaqe. The resulting trans-

formation based on this method is shown in Figure 15(d). In

this method, a compromise is made to match the overall in-

tensity of the two images whereas image transformation using
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the method described in Section 2.2.2 products a better

match in tracking the variations of local intensity. Matching

the overall intensity is most important whenever a non-

normalized similarity measure is used.
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2.3 Fourier Transform

The most salient of the optical systems was developed

by Lendaris and Stanley for terrain classification. The

sensor or feature extractor measured aspects of the optical

Fourier transform in specified geometric patterns. The

initial system utilized coherent optical techniques to ex--

tract measurements (features) of the Fraunhofer diffraction

pattern which were classified via an interactive nonstatis.-

tical classification method. In the present application the

image f(x,y) is transformed optically into its Fourier space

F(Nx , Vy) via the well-known property that coherent light

passed through an image f(x, y) and then through a thin con-

vex lens produces the diffraction pattern in the back focal

plane. The coordinates (u, v) of this transform plane are

directly related to spatial frequencies and of the input

image. This is shown in FRqs. (35) and (36).

S -z rr f(ux + vy)
F(u,v) = C]] e Xf f(x,y)dxdy (35)

-0 -0

\X= u V v (36)
%T- Y It-

The constant X is the wavelength of the incident light, f is

the focal length of the transform lens, and C is the ampli-

tude transmission factor. The sensor is composed of 32

angular wedqes which sample the squared modulus of the dif-

fraction pattern (power spectrum I(u, v)) and produces
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appropriate signatures

I(u,v) F(uv) :(UV) )

where - denotes a complex function and * denotes conjugate.

The annular ring sample signature is expressed in polar

coordinates as

T PL+Ap

r J UP8). pdf@ (39)

J

j = 1,2,....32

where p = (u2 + v2)1/ 2 and e = tan v/u. Each r. signa-~J

ture value represents the total power in the annular region

(pj, pj + Ap). The wedge signature values may be similarly

described by

Prnax 8. + A.
W3 P J I I(p, ) pdpd (39)

j = 1,....32

in which each w. represents the total power in an angular

frequency band from (9j, e + AO).

The focal length f of the transform lens is adjusted so

that the outer ring of the detector images 8 Zp/mm. The

annular ring signature provides a rotationally insensitive
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means of detecting one- or two-dimensional spatial perio-

dicity within apertured areas. In contrast, the wedge signa-

tures are insensitive to periodic structure but sensitive to

direction. both frequency signatures subsequently have

yielded valuable features for object detection.

To initially evaluate the effectiveness of Fourier

features for map matching, the following experiment was

performed. Four corresponding regions in an optical and

radar scene were selected as illustrated in Figure 19. The

Fourier transform of the corresponding regions were computed

using a coherent optical system. Comparative photographs of

the magnitudes of the Fourier transforms of the regions are

shown in Figures 19 to 22. Note that the most obvious pat-

tern is that the optical image contains more high frequency

energy corresponding to greater detail in the optical images.

Also, a correlation between line structures in the images

and transforms is visible in several of the patterns. To in-

vestiqate the transforms with a more sensitive detector,

ring and wedge measurements were made using the RSI detector.

Graphs of these results are shown in Figures 23 to 30. Note

that these measurements indicate a correlation in both ring

and wedge measurements. Thus, more quantitative studies

such as map matching with these measurements are required.



(a) Optical Image

(b) Radar Image

TFii~trv ;orresrIroning sce-ne selected for If'iirier t ransforivs iiveasuiren e
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(a) Fourier transform of
optical image of the
rural field region

(b) Fourier transform of
radar image of rural

field region

Figure 19. Fourier transform of rural field region
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(a) Fourier transform of optical

image of road intersection
region

A!

(b) Fourier transform of radar

image of road intersection
region

Figure 20. Fourier transform of road intersection region

-L 
A
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(a) Fourier transform of optical
image of curving road region

(b) Fourier transform of radar
image of curving road region

Figure 21. Fourier transform of curving road region
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(a) Fourier transform of optical

image of stadium region

(hi Fourier transform of radar
image of stadium region

Figurv 22. Fourier transform of the stodium region
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SECTION III. EDGE EXTRACTION AND REGISTRATION

3.1 Introduction

An important technique used in automatic scene analysis

is image segmentation. This technique involves separating

the image into various regions corresponding to individual

objects. Assuming that these regions have some homogeneous

characteristic, for example, luminance, color, texture, etc.,

one segmentation technique is to detect sharp transitions

called edges, which tend to outline the desired boundaries.

The opposite alternative is to "grow" regions by connecting

small adjacent areas of similar characteristics. Of interest

here is the detection of edges that separate regions of dif-

ferent constant luminances, and lines which can be regarded

as a degenerate pair of edges. This operation requires the

examination of several picture elements within contiguous or

overlapping sub-areas of the image, followed by a decision as

to whether an edge or the line segment is present or not

within each sub-area.

The segments can be characterized by variable such as

amplitude, orientation, position within the sub-area, etc.,

and possibly a measure of confidence.

Upon examination of the whole picture, the object boun-

daries are constructed by connecting the edge and line ele-

ments detected previously. This operation can be directed by

simple syntactic rules, for example connect neighbor edge

elements that line up approximately, and delete isolated

parallel elements.
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Some of the difficulties of edge detection are caused

by noise, but much more so by the fact that visually dis-

tinct edges sometimes cannot be discriminated within a small

image sub-area or, conversely that what appears to be an edge

within the sub-area could belong to a homogeneously textured

domain of the picture. Increasing the size of the sub-area

apparently solves the problem, but is limited by computa-

tional costs and the complexity of large segment description.

It is generally recognized that boundary detection is

therefore best done by the combination of a relatively simple

edge and/or line segment detector, followed by algorithms

that thin and link the segments obtained into continuous

boundaries. Several fast numerical techniques for luminance

edge extraction have been published, for example, Robert's

"gradient" [1], Kirsch's [21, Sobel's [3], Prewitt's [4],

Robinson's [5], and the so-called "smoothed gradient" [6]

operators. Comparison of the above algorithms reveals simi-

larities that suggest underlying general principles.

From these we develop a set of orthogonal functions

which are closely related to distinctive image features. The

properties of these functions suggest ways to minimize the

amount of computations as well as an improved decision crite-

rion. Considerable improvements are obtained in terms of

boundary "thickness" and sensitivity to faint edges. The

edge detection methods are described in Section 3.2.

The simplicity of edge data with its low computer

memory requirement suggests several ultra-fast image registra

tion methods through edge correlation. Theories of edge
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correlation have been investigated and several experiments

have been performed to test their applicability to real

images. Section 3.3 describes edge registration as a poten-

tial method of image matching. Experiments were performed

to register:

• Optical-to-optical images

Radar-to-radar images

• Radar-to-optical images

The results of these experiments are discussed in

Section 3.3.

4 . ..
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3. Fast Edge Detection

3.2.1 Definitions

The problem of boundary element detection can be for-

2mulated as follows: given a set of n luminance samples from

an image sub-area, determine whether the sub-area contains a

boundary element between two regions of different homogeneous

luminances (edge). It may also be of interest to determine

whether the area contains a line or a pair of degenerate

edges enclosing an object too thin to be resolved. To this

end, we define the following mdoels of "ideal boundary ele-

ments.

Consider an image sub-area A of size n x n sampling

intervals shown in Figure 31a. In the continuous image do-

main, we define an "ideal edge element" as a straight boun-

dary, passing through the center of A, and which separates

two regions of different, constant luminances b and b2 .

Adopting the convention b I > b2, the direction e of the edge

element is uniquely determined with respect to any arbitrary,

fixed direction as shown in Figure 31b. The ideal edge ele-

ment is characterized by its "magnitude" = l - 1 and

orientation e' 0-e < 2n.

Next we define an "ideal line element" (in the continu-

ous image domain) as a straight strip of width approximately

equal to one sampling interval, passing through the center of

A, and of different luminance bI than its surrounding b2 illu-

strated in Figure 31c. The ideal line elements is charac-

terized by its "magnitude" = Ib - 12I, its orientation

0 ,__7T and polarity sign (b1 - 12).

. -- L ... .: .. . o _. . .. i - " - 4-
" ,. .u "' A
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FIGURE 31.
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Finally, an "ideal point" is defined as a point of

brightness bI different than a constant brightness b2 of the

surround. The ideal point is characterized by its "magni-

tude" = 1 I - b I and -olaritysign(b1 -

For the discrete case, we define the following notation.

Consider the set of n2 luminance samples b. of the image sub-

2
area as an element of an n -dimensional vector space B. The

elements of B can be represented by a matrix B or a column

vector b, for example (n=3)

b1 1 b12 b 13

b21  b22  ,or = . (2)

n n a 2

(B, C) b Z b..c.. or (b, c) = b.c., (2)j=1 j=1 J L - - i ! **
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3.2.2 Review of Previous Work

Previous fast edge detection algorithms [1-5] fall

essentially into two categories:

a) Evaluate the maximum average gradient AG (or

"smoothed gradient") present in each image sub-area. The

average is estimated in a direction perpendicular to the

(unknown) edge element orientation and the maximum is approxi-

mately obtained by

AG w [(B, W)+ (B, W) (3)

where B is the vector of luminance samples and Wl, W2 are

weighting functions shown in Figure 32 a, b, c[1,3,6]. When

the average gradient exceeds an arbitrary threshold, the image

sub-area is considered to contain an edge element. Orienta-

tion is then obtained aoproximatelv as

=atan[(B, W I)I/(B, Wz) ]  (4)

In order to simplify comoutations, the sum of squares

of eq. 3 is sometimes replaced by a sum of absolute values.

it is oointed out that the above measures are not isotropic,

e.g. certain edge orientations are favored over other ones

[5]. A pair of isotropic weighting fuctions is shown in

Figure 32d.

b) The second approach is to form inner products of the

luminance vector B with a set of discrete edge templates or

__________________________________
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l 0 0 1

0 -1 -1 0

a) Roberts "gradient"

1 1 11 0 -1

0 0 0 1 0 -1

- 11 0 -1

b) "smoothed gradient"

1 2 1 1 0 -1 -

0 0 0 2 0 -2

-L -1 1 2 - j 1 0 -1

c) Sobel weighting functions

1 f2 I 1 0 -1

0 0 0 02 0 - J2

-1 -,r2 -1 1 0 -1

d) Isotropic weighting functions

FIGURE 32.
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masks T, of different orientations as shown in Figures 33a, b,

c, d[2], [41, [5]), and retain the largest value

max {(B, Ti)}

When this value exceeds an arbitrary threshold, the sub-area

B is considered to contain an edge element. The direction is

approximately equal (±7/4) to the orientation of the template

giving the largest inner product.

This second concept can be immediately extended to line

and point detection with the template vectors shown in

Figure 34a and b.

....(:i , j i k i
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-I

(a) Prewitt (b) Kirsch (c) Three-Level (d) Five-Level

Masks Masks Simple Masks Simple Masks

(Robinson)

1 11 5 5 r5 .1T = 1 2 1

-2 1 -3 0 -3 0 0 0 0
-1 -- l -3 I-3 -3 -1 -:- -T -2 -1

1 15 3 1 1 0 -2 1 0

15 0 -3 0 -
"1- I -3 -3 3 0 1& , -- 0rI 2

, 1 -I5 -3 .3 1 0 -1 1 0 -1

-l -- 5 0 -3 1 0 - 2 0 -2

1 -1 5 :3-3 31 0_1-1 1 O -

l -1 -1 -3 -3 3 -0 - -1 0 1l -2

] -2 1-1_ 5 0 -3 1 0 l- 1 1 0 -lI

1 003 0 2 1 0

-- 3 -3 - -2
1 -2 1 -3 -0--3-  0 0 o -0 0 0 o
115 5 5 1 2: 2 1

- -- -3 -3 -3 - 1 - 0 -2 .1 1o

-l-3 0 5 0

1 1 1-3 -3 15 o- 1 1o 1 2

-l 2 -3 -2 0 2

-l-3 -l 0 1

i j -3 5 5 1 l ~ 2
-I 2 I-3 0 5 l- _-1 0 1

-I I I -3 -3 .3- I 0-2 -.l 0

FIGURE 33. "TEMPLATES" OR "MASKS" FOR EDGE DETECTION [4],[2],[5]

~I i iii - .. - -
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-1 -1 11 2 -1 2 -1 2 -1-

2 2 2 -1 2 -1 -1 2 -1 -1 2 -

-1 112-11 - 2 -1 -- 1 2

a) line "templates"

- 1 -

b) point "template"

FIGURE 34.
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3.2.3 Derivation of Orthogonal Feature Basis

We now seek an aporopriate basis for B. Because the

templates of Fig. 33c and 34a reoresent samples of ideal edge

and line elements positioned in eight equidistant orienta-

tions, we assume "edge" and "line" subspaces of B spanned by

these vectors. Of all possible orthogonal bases for these

subspaces, we choose the one shown in Fig. 35 because of the

following properties: a) the first pair of basis vectors W1

and W2 represents the isotrooic smoothed gradient weighting

function. This oair, taken together with the second pair

spans the above "edge" subspace. b) The second pair of basis

vectors W3 and W4 has a distinctive higher order aspect

(three zero crossings instead of one) and will be shown to

contribute little to the magnitude of the edge subspace com-

ponent. c) The "line" vectors were decomposed into pair of

j vectors W5, W6 with directional preference and a pair W W

without directional preference. Note that the point basis

vector of Fig. 34b is equal to the sum of the latter pair,

which, incidentally, span all possible discrete realizations

of the discrete Lavlacian [71. Finally, the vector W9 was

added to complete the basis. Observe that linear combina-

tions of each pair of vectors produce similar distinctive

patterns, which we call "average gradient," "ripple," "line,"

and "Laplacian" respectively.

Fig. 36 and 37 illustrate the above discussions. An

original image of size 256 x 256 pixels was projected onto

each one of the nine orthogonal basis vectors of Fig. 35.
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Isotropic -0
"average 0 0 0 \/ 2 0 -\ 2

gradient"

subspace 1 1 0 -1

1 Basis of edge

Isubspace

0 -1 V 2 -I 0

"Ripple" -

subspace 1 0 -1 -I 0 1

w 3  
W4

0 1 0 - o I L

"line" -1 0 -1 0 0 0
subspace 0 1 0 I 0 -1

Basis of line
subspace

1 -2 1 -2 1 -2

"Discrete 4 -2 1 4 1
Laplacian"
subspace -2 1 2 1 -2

W 7  
wx

1 I !

"Average" I 1 1
subspace

I ! 1

w
FIGURE 35.
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Original Images

W1 (edge) WV2 (edge)

IV5(line) 3 36. IW6 (line)



w, R.

W7 (laplacian) W8 (laplacian)

W 3 (-ripple) \w 4 (ripple)

Figure 37.
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Since the projections are bipolar, a constant value was added

for display, and the images were scaled for better display.

The complementary nature of (edge, ripple) and (line, point)

spaces is clearly visible and can be attributed to the fact

that the former basis vectors are odd with respect to one

axis of symmetry whereas the latter basis vectors are even

(see Figures 33c and 34a).

In order to reduce computation, it would be desirable to

reduce the dimension of the feature subspaces. Figure 38

shows the magnitudes of the projections onto "average gra-

dient," "ripple," "line," and "point" respectively. While

the last pair of projections appear similar (any line is com-

posed of points!), the "average gradient" and "ripple" pro-

jections are quite different. It is easy to see that the

"ripple" subspace adds little to the "edge" subspace and may

be ignored to save computation.

An improved edge picture can be obtained by a simple use

subtract the edge magnitude form the sum of line and point

magnitudes, the resultant picture will have diminishing values

of those "edge points" with impure edgeness, making real

edges sharp and obvious. Depending on the noise level of

the original image an alternative edge decision criterion

could be a relative edgeness thresholding in stead of absolute

one. In this way faint edges can be detected with the same

opportunities as those of strong edges. However, care must

be taken as deciding faint edges because they are more sub-

ject to noise.
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Magnitude in E-Subspace Magnitude in L-Subspace

Magnitude in P-Subspace Magnitude in R-Subspace

FlfUrf- 38.
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Following this, the edge picture can even be improved

by running the convolution (Fig. 34b) on it. This "ooint

operation" effectively extracts peak values of the source

array, making the edges even thinner and prominent. However,

this follow-up process will raise the noise level somewhat

and it has to be accompanied by noise cleaninq. This is

similar to peak detection in [9].

*1
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3.3 Edge Registration

3.3.1 Edge Correlation Methods

For the purpose of fast feature mapping the edge infor-

mation of both the search region and searching windows is ex-

tracted. Correlation or similarity algorithms are then run

on them. There are several advantages to edge feature regi-

stration instead of original scene magnitude registration.

Firstly, edges are more likely to be sensor independent

(optical vs. radar). Secondly, they are invariant to illumi-

nation change or even to a local illumination reversal.

Thirdly, the storage of edge map requires up to 88% less

storage, because of the low percentage of edge points among

a picture in general. If bit operation is available the

storage can even go down for several other orders. Finally,

search computations can be reduced to logical functions in-

stead of fixed point multiplications.

Let two images, A the search region and B the window be

defined as M x N and m x n pixels respectively and both are

represented by integers. The task is to find the sub-area of

A which registers or best fits B (Appendix A). Either a

sequential or random search strategy can be implemented.

Besides this, there are several ways to define similarity and

their computational requirements differ considerably[1O].

The elements of unnormalized cross correlation surface

R(i,j) are defined as

n in

R (i,j) =1 E A (k,) B (i+k, j-+t) (5)

kpl9
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A search for the maximum on the surface is then initiated.

However, the maximum does not necessarily yield the registra-

tion point or yields a bad fix. Therefore, the correlation

must be normalized as

Un m
Ai (k ) i+k

R (ij) = k=l t=l (K - (6)

The resultant fix is much better than the unnormalized cor-

relation and the normalized correlation does give excellent

results as to the self correlation of both optical and radar

scenes. It is sensitive to background level and it requires

extensive computations.

As a remedy, the followina new similarity measures are

proposed. Further details of which are described in Appendix

B. These measures represent the edge pictures with binary

numbers 0's and l's for edge points and non-edge points re-

spectively. Define a logical similarity measure as

n rn
k~l I A (k,.t) .B (k+i,+i

R ij)=k=1 t= (7)
M n m

E A (kt) x E E B (k+i, t+jk=1 t,1 k-=1 t=I
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formula is for use in the case where only edge points are

to be considered and can be further approximated as

m n

R ( = __ _ E E A (k, t,) -B (ki+j (8)RAND~iJ nimx n
k=l ?,=I

Alternatively, if all points are to be considered (edge

and non-edge points) we define the NOT-EX-OR correlation

measure as

n mR I. E 
9

EXOR mxn .k=l .= A (k,t) EX-OR B (k+i,.+i)

Note that RX (i,j), RAND(i,j) and RE-- have values between

0 and 1; they are normalized quantitives. A comparison of

the different correlation computations is shown in Figure 39.

'II



86

0

44.

zH 0
0 b

0 0 0 04-
z- E-4 9

0

41 00

X >< k 4

Q to 4)
p! 4) kU (U

r4 uJ -4 0

0 0

4 ~rZ4
.4 44)

N C4 -4 .

< 0
o. W k k14 A ; o b

4) 4) 4) r.

too bbO bo 4.3 4.)

4) 4)40 4) 4) 4) to to
0 0 9 41 4-' 41' 41' 0 0

10,

W Z 0

00

86



87

3.3.2 Experimental Results

A sequence of experiments were performed using the

edge correlator method (Eq. (8)) to register:

* Optical-to-optical images

Radar-to-radar images

Radar-to-ootical images

Figure 40 shows the edge pictures extracted from the

optical and radar images. The size of both images is 180 x

180. A window of size 64 x 64 located at the coordinates of

(57, 57) was selected from the optical image as shown by

solid lines in Figure 40(a). This window was correlated with

the 180 x 180 optical image at every fourth location to pro-

duce a correlation map of size 30 x 30. The result is shown

in Figure 41a. Similarly, the radar-to-radar correlation

was performed and the results are in Figure 41b. Both

figures show sharp correlation peaks located at the points

of true registrations, thus providing a high confidence level

that the correct matches have been found. These results

indicated that when two images are relatively free from geo-

metric and sensor distortions, the implementation of edge

correlator using the fast algorithm with the AND operator

as in equation (8) is especially attractive in real time

computation. It reduces computations and storage require-

ments since the fixed point multiplications have been replaced

by the simple AND operations.

To see how the edge correlator can be applied to radar-

to-optical registration, two windows of different sizes and
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Window: 64 x 64
Reference: 180 x 180
Window Coor.: (57, 57)
Pixels per Shift: 4 89
Algo.: Correlation

a. Optical-to-optical correlation

b. Radar-to-radar correlation

Figure 4]1.
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locations were chosen from optical images. The two windows

were then correlated with the radar image.

The window sizes and locations as shown in Figures 40

and 43 can be summarized as follows

Window No. Window Size Location Reference Size

1 (64 x 64) (57, 57) (180 x 180)

2 (32 x 64) (49, 21) ( 90 x 122)

Window No. 1 was correlated with the reference image at

every 4th location. Window No. 2 was correlated with the

reference image at every 2nd location Figure 42 shows the

correlation of window No. 1. For clarity a threshold was

selected so that only those points with relatively high cor-

relation were shown. Similarly the correlations of window

No. 2 are shown in Figure 44. In the case of window No. 1,

although a relatively high oeak was found to be located at

the true registration location, other peaks of equal or

A higher amplitude were also obtained. This provided only a

relatively low confidence in locatinn the true registration

ooint. In the case of window V:. 2, a high peak was obtained

at a location which is four pixels away from the true re-

gistration location. An examination of the optical window

and the reference radar man indicates that a slight geometric

misregistration exists between the two images. Thus, the

correct matching location was located more accurately by the

automated technique.
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Window: Optical (64 x 64)

Reference: Radar (180 x 180)

Window Coor.: (57, 57)

Peak Coor.: (81, 69)

Peak Amplitude: 0.470

Pixels per Shift: 4

1"1

-I-

Figure 42. Radar to optical correlation thresholded at T= 0. 420

to emphasize peak structure

14

I



92

m4*

R. -,

r I
oAI

a. Optical with window no. 2

~K r

b. Radar

Figure 43. Optical and radar edge pictures (90 x 122)
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Window: Optical (32 x 64)
Reference: Radar (90, 122)

Window Coor.: (49, 21)
Peak Coor.: (53, 25)

Peak Amplitude: Q.369
Pixels per Shift: 2

Figure 44.~ Radar to optical correlation thresholded at T =0. 280

to emphasize peak structure.
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3.4 Conclusions

Several significant techniques on edge extraction and

registration have been developed in this section. These are:

1. A set of edge operators extracted from the derived

orthogonal basis were identified. These operators encom-

pass nearly all of the previously derived operators by other

researchers on a 3 by 3 image window. Therefore, the new

edge operators can be applied to extract edges as well as

other important image features such as points and lines.

2. A correlator with AND-operations was developed. This

correlator is far more efficient than the existing correla-

tors in terms of computational efficiencies and storage re-

quirements. Theoretical and experimental results derived

from this section indicate that edge feature can be used as

a useful tool in image registration. These results indicate

that the edge correlator is efficient and works very well on

most regions of a scene in which only a few salient edges are

present and no significant geometric or sensor distortion is

present. Whenever, geometric or sensor distortions are pre-

sent, the edge correlator performance is heavily dependent

upon the scene content as well as the degree of distortion.

Further research is needed to predict the degree of sensiti-

vity to these distortions as well as on other edge detection

operators and techniques.

i1
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CONVENTIONAL SIMILARITY MEASURES

. FOR CORRELATION SEARCH
N

Window scene B (k, t)
71 (sensed scene or ref. map)

M J

Search region A (k, t,)
/(ref. map or sensed scene)

- Search region A is M. N pixels

- Window scene B is m. n pixels

- A and B are represented by integers

Cross-Correlation

n m

R (i.j) A (k, t). B (i + k, j + t,)

k=l 4 =

Problems: R(i,j) is a function of energy content of B within
window at position (i, j). Fix is very bad (see 2-D
plot)

Normalized Cross-Correlation

t A (k, 0) B (i +k, j+,C)

RN (ij) =

Remarks: Fix is greatly improved (see 2-D plot)



Appendix B

THE LOGICAL NORMALIZED CROSS-CORRELATION MEASURE

CA NEW SIMILARITY MEASURE FOR

CORRELATION SEARCH OF EDGE MAPS

Problem: The conventional cross-correlation or normalized cross-
correlation measures cannot be used for binary representation;
bipolar representation must be used to account for points where A=0,
B-1 or A=l, B=O. Failure to do so would bring in only points where
A=B=l.

Binary representation of edges 0

edge point can
fine

Bipolar representation of edges

This is achieved at great computational savings by the LOGICAL

NORMALIZED CROSS-CORRELATION MEASURE'

n m
A (k, t) (D B (k +i, t,+j)

R RL 4i j)
AL ((k, =,)_ B (k+i, LBkj))

k, k~l L,=1

The sums are simple incremental counters.

- The integer multiplications of the numerator are replaced by a
1 bit EX -OR function.

- The integer squares of the denominator are eliminated.

- Sequential similarity search can be implemented by randomizing
the memory addresses corresponding to the indices k, t,
k+i, t,+j.
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SECTION IV. INVARIANT MEASUREMENTS

4.1 INTRODUCTION

The theory of algebraic invariants from which the various

facets of invariants developed is based upon a simple idea

which first appeared in Lagrange's papers and was subsequen-

tly developed by Gauss [1,21.

This simple idea was: given a quadratic equation

2
ax + 2bx + c = 0

lets us transform x to y by:
Y = px+q or x q-sy

rx+s ry-p

then transformed equation will be

Ay2 + 2By + C =0 where
2 2

A = as + cr - 2bsr

B = -aqs + b(qr+sp) - cpr
2 2

C = aq - 2bqp - cp

then let us form the discriminant:

B - AC = (ps-qr) 2 (b - ac).

Hence the discriminant of the equation in y is equal to the
2

discriminant of the x equation, times the factor (ps-qr)

which depends only upon the coefficients p, q, r, s in the

transformations y = px+q
rx+s

Boole was the first to observe that for every equation

the discriminant remains unchanged (except for a factor) if

x is transformed to y by some transformations.

--,>1~l1m_ i ... ... .-- !,,,i" -
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A uniform method which would give all the invariant

expressions was given by Cayley in 1945 by his memoir, "On

the Theory of Linear Transformations." Then Sylvester joined

him in the construction of the general theory of algebraic

invariants.

The development of invariant algebra continued through

the first half of the present century by efforts of E. Elliot,

Salmon, Grace and Young, et. al.

Algebraic invariant theory contributes the derivation

of algebraic expressions which will remain invariant under

certain transformations. The first use of algebraic invari-

ants and moment invariant measurements for the purpose of

picture recoqnition was advanced bv Hu [2]. He used spatial

moments as a means of representing characters and normalized

them by developing a theorem relating momement measurements

to algebraic invariants. Hall, et al. [3,4] has used moment

invariants to describe both the spatial distributions of

objects and edge structures of texture patterns for chest X-

ray recognition.

A major problem encountered in the computer representa-

tion and measurement of a scene is the fact that by changing

the viewing angle, scale, or rotation, most numerical measure-

ments will change substantially. Therefore, it is desirable

to consider normalization of the derived measurements in

such a way that invariant properties be established.

+ ... +;*+" --Ii ,,J ....... .... , L . .. . :° ,: .. ...,"-M. N
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Any discrete two dimensional scene may be represented

by f(xllYi); i =,2,...,N, j = 1,...,M. Certain measure-

ments from this two dimensional array may be normalized by

the utilization of algebraic invariant techniques.

The purpose of this section is to explore more deeply

the use of moment invariants for the analysis and represen-

tation of complex scenes, present an analysis of a variance

of the "invariant measurements" when made on computer images,

and present pictorial examples for scene analysis.

I1

-I
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4.1.2 QUANTICS AND INVARIANTS

Quantic

A function of several variables x,y,z,...which is ra-

tional, integral and homogeneous is called a quantic.

If there are only two variables, such a function is

called a binary quantic, and for a qeneral q variable we

call it q-ary quantic.

The order of a quantic is the degree of x,y ....

The quantics of 1st, 2nd, 34d,..., pth are called

linear, quandratic, cubic,..., p-ics respectively. The binary

p-ic will be denoted by the form: a xP + paxP-l y+... P-r+l

arx p-r+l yr which is usually shown in short as:r

(a0,ala 2,...,a P) (x,y)P

Note: When we talk about the coefficient of a binary quantic

we mean a0, a1 ,...,a and not a 0 ,pa 0 ,..., p - r+l) m.....
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Invariants

An invariant of a single quantic is a function of

the coefficients of that quantic which, after a linear trans-

formation, remains constant except for a multiplicative

factor which is a function only of the coefficients of the

transformation.

Ex. Consider a binary quantic of order p:

Q = (a0 al, ..,a p)(X, y)P

in which we transform x,y by

£Y 121 A£22A

then the same quantic in the transformed domain would be

Q = (ao, a l, ... I ap

where the values of a a1 are evaluated by the iden-

tity:

(a0 , a1 ,..., ap)(x, y)P- (a0, al ...,a)(X )P

Now we say f(a0 ,...,a ) is invariant under the above trans-
p

formation if the following identity holds:

if(aO alP ap) = (122)a0 " a ",ap)
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where % is a power of the determinant of the transformation:

= A

A being the determinant of the transformation, i.e.

A = £ 22 -2 2 for the case of w= 0 we have absolute
11 22 12 21

invariants.

Two sets of (x,y,...) and (x',y',...) are called co-

gradient if a linear transformation on one set compells the

other set to the same linear transformation.

Two sets (xx 2 ,. .. ,x ) and ... ,y,) are called

contragradient if we transform the first the first set by

x' = Lx

where

L =[Arj] det LVO

p?

x
x=:[jj

p

then the transformation for the second set has to be

y' = LT
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where

L- T is the transpose of the inverse of L

Theorem: In contragradient quantities x y remains invariant.

'8 Proof: x' = Lx
y, -T

YT T T

x' ' I xL L y= xT

4.1.4. Invariants of Orthogonal Transformations

Suopose we have a binary quantic of order p:

(ap0' ap-l, i' "." ."a p OP Y pa(x,y)~

consider the transformation

((cos 
s in ~o( x'

Now we transform (x,y) and (x',y') as follows

an

and



1.05

then we would have
=1

U' = + iy')

VI = (X- iy')

U =1 (x + iy)

V=(x- iy).

Now substituting for x and y

u [x cos_ Y'site] + .i[x' si ie+y coge]
1 ,i9 1.,i9

Txe + 1iye = e*O U '

Hence

Ut = Ue- 8

V !(x-iy) ![x'cose - ysin8] - Ix'sine+y'cose]

2 x - yi =e- eV.

Hence

V' = e iq .

Then we will have the following identities

Pp ... #I OP)(u. V)p = (a pO, .. , a Op)(X, y)P

,-(apo -' "x' y )P .
(a O ... a t ) x, )P

, , I~p)(Ue- i veiO p

'(pO .. Op
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Then the invariants of which there are p+l linearly indepen-

dent ones, are obtained from the following equations.

it = e ipe I

p 0

From the first two identities we have

+P= i (I)a... 1-** (i)

PO 2 -2

I p-1, 1 = (a PO+aP-Z, 2' iIp-")(p-1,1 +a p3, 3)

122 (a 0 +2 + iPa2, 4 4 )Zi(Pp)(.,+ aa 5  )

p- 2(aP+2ap-2 , 2 +p-, p4)aP1 2ap-3,3 +ap-5,5

+... +(-i)P (a 4p4+ Za 2p2+a P

P-rr P p2, p2r2 a 0

(a P-, ap3;--;ap2-,rl1)r

(a Zr p-2r' a&r+Z p-Zr-2 ;*-a OP)(1, 1)r](1 . i)p-Zrp Z-r> 0



107

and

1pIZ / a~0 + (P/2~ 2  (PZa +.. . +a0

p = evet%.

SEGE
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4.2 Perceptual Invariants

In a discussion of shape recognition, Deutsch[3] de-

scribed four invariance properties of human perception.

1. Shapes may be recognized independent of their

location in the visual field. It is not necessary to

fixate on the center of a figure in order to recog-

nize it nor need the eyes be moved around the con-

tours of a figure. Thus, shape recognition is in-

variant to translation provided the object remains

in the visual field.

2. Recognition can be effected independently of

the angle of inclination of a figure in the visual

field. The angle refers to the angular orientation

of the figure in two dimensions although some in-

variance to the depth angle is also observed.

*Therefore, the recognition of a figure is invariant

to rotation in two dimensions, although the angle of

rotation may also be recognized.

3. The size of a figure does not interfere with

the recognition of its shape provided the entire

figure is within the visual field. Thus, visual

recognition exhibits an invariance to scale.

4. Mirror images appear alike. Both humans and

animals tend to confuse these. This observation

rules out a template matching theory of shape re-

cognition because a template superposition cannot
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take place for mirror images and thus the confu-

sion cannot be predicted.

I

I.

I ' " ' ... , .. ... z .. .. ... . . .. .'
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Deutsch also points out that certain primitive organisms

find it more difficult to distinguish between squares and

circles than between rectangles and squares,which casts

some doubt on recognition theories based on angular properties

of figures. He also argues that the invariance properties

arecommon to all parts of the visual cortex, which rules out

a scanning process for shape recognition. To illustrate that

the invariance properties could be realized easily, he pro-

posed the following system.

Thereceptor surface is connected to a two dimensional

coding array which is excited by a contour falling on the

corresponding receptors. For example, if a spherical object

is focused on the retina, the circular contour is projected

on the coding array. The processing of the edge contour is

described by the following four rules.

(i) Every figure excites the retina only by its

contour i.e., only the contour of the figure

will appear on the to w dimensional array.

(ii) Every array point will transmit a pulse down

the common cable as soon as an excitation

reaches it from the retina. The integration

of th-se pulses gives a measure of the total

number of edge points.

(iii) Each contour point on the array will also ex-

cite all the units which are at right angles

to it on the array. These excitations will

not pass to the common cable but only to the



neighboring cells. It is also assumed that

these lateral excitations move at the same

speed in all directions.

(iv) As such lateral excitation from a point in a

contour advances another message will be

sent down the common cable as soon as it co-

incides with another contour point.

The recognition of shape is made from the signals on

the common cable. For each pattern, two sets of pulses,

separate in time, are transmitted. The first set relates to

the number of contour points. The second provides shape in-

formation. This system can be shown to be invariant to

translation, rotation, scale and mirror image as previously

described. The invariance to translation, rotation and mirror

image transformations would affect neither the number of con-

tour points nor the distance between edges in the figure.

The size invariance may be obtained by normalizing the se-

cond signal by the first. That is, the lateral excitation

signal would be used to normalize the occurrence times of the

second signal.

It is interesting to note that the proposed system

would be more easily confused in differentiating circles and

squares than rectangles and squares.

Both circles and squares would produce two sharp

pulses which could be of equal magnitude if the same number

of edge points were detected. However, the rectangle would

produce three pulses and could easily be distinguished from
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either a square or circle.

The limitations of this simple model are many; however,

it does illustrate a logical approach to recognition. First,

the desired recognition properties are determined, then a

system which satisfies these properties is designed. The

particular system described was devoted to shape recognition.

Other systems need to be developed which are invariant to

intensity changes and more complex images. The nower and

simplicity of Deutsch's approach was a major contribution

from psychology to the understanding of recognition systems.

1l

...L..
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4.3.1 Moment Invariants

Any two-dimensional pattern can be represented by a

picture function, f(x,y), with respect to a pair of axes

fixed in the visual field. It is also true that by means of

a uniqueness theorem[3], two dimensional moments, mpq,

which are defined as:

=jp J CO xPyqf(x, y)dxdy

p,q= 0, 1, 2, ..

can be used to uniquely represent f(x,y). Hence one may use

m as a means of representing any two-dimensional pattern.
pq

The computations of mpq consist of multiplying the

functions f(x,y) by a monomial xPyq and integrating the re-

0 0 0 1 0 3sult. The monomials of order 3 or less, x y , x y ,x y

1 0 1 1 2 0 2 1 3 0 1 2xly ,xl y ,x y ,xy l ,xy . and xly are shown in Figure 45.

The moments of order p+q may also be interpreted as the

response of an imaging system with the transfer function of,

x yq , and the input, f(x,y). Low order moments have intui-

tive relations to objects. For example, m0 0 is related to

mass m 10 and m 0 1 to center of mass and mill, m 0 2, and m 2 0 to

principal directions.

Another useful concept is the moment generating func-

tions which is defined as:

M(U, V) f exp(x + vy]f(x, y)dxd y
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If u and v are considered as complex variables, this expres-

Ssion is a two sided Laplace transform. For the invariant

development both P and v are assumed to be real. This func-

tion can also be written in the form of
I

S W (u)P ()
M~~g, ~ V E E flnpq p. P

p=0 q7O

where the exponential has been expanded in its Taylor series

equivalent, assuming that moments of all orders exist. This

equation shows that the moments may be determined from the

derivatives of the moment generating functions evaluated at

the origin.

Central mements are defined as

;pq (X)P(y) p(x, y) dy

where

10 - 01
00 ~00

Central moments may be easily shown to be invariant under

translation and from here for the sake of simplicity we will

assume to be using central moments.

To relate the moments to algebraic invariants, one may

first expand the exponential term in the moment generating

"inction to obtain

Ewe
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* m

M(u, v) Jj -(ax +vy) p(x, y)dxdy.

Now after using the binomial expansion and carrying out the

integration:

M(P, V)- p! "p. U r, r r ) .

The functions of the form

P p-r

r=O p-r,rr U v

are called qualtics in the study of algebraic invariants[l]

and play a major role in the computation of moment invariants.

The fundamental definitions of this theory are described in

Section 4.2.1.

4.3.2 Fundamental Theorem of Moment!- Invariants

If the binary p-ic has an invariant

f~a= oi .. f(a a

then the moment of order p has an algebraic invariant

f(P 0 ,. "'p) = .J.. Pf(opO,... 'Op)

____ ____POP_ ___
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where J is the Jacobian of the transformation.

The importance of this theorem lies in the fact one may

find an invariant function of moments once we have a corre-

sponding algebraic invariant function.

A point which should be emphasized is the generality in-

volved in linear transformations. The only restriction was

A 3 0. Hence we can use rotation, reflection, magnitude

change, and correspondingly make our normalization with re-

spect to magnitude, rotation, orientation, etc.

Example: Similitude Moment Invariants

Consider the transformation

[:a= constant

we can write an algebraic invariant simply as

p+q
a ' = O apq

wherea 8 is the determinant. By using the fundamental theorem

the moment invariant is:

p+q+2 (1)

2
Since J = 2

For zero order (p+l = 0) we have:

S 2 (2)

now by eliminating ( between (2) and (1) be have the following

absolute moment invariants:

iT
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U' = p+q 2., 3 ...

2 (P)2 l
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4.3.3 Derivation of Moment Invariants

In the following we attempt to use the concept and tools

of invariant algebra which is discussed in Section 4.1 to

derive the seven invariant moments which are simultaneously

invariant with respect to size, orientation and location of

the object in the scene. The detail theory behind these deri-

vations is given in Section 4.1. So in the rest of this

sub sect-on we proceed to use those tools in calculating

the invariant moments.

10x y

rnO - (M 0 0

=0

=, E,(x-) I(y -Y) f(x, y)
xy

n -n1l 0 rn01

IL20 = (X-X)2(y-y)0f(x,y)
xy

M m0 rn 0 2 rn 10 0_2
m 2 00 .00 00

0 -) (x-£°(Y-y) f(xy)
xy

Mr01 202 mO0
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3 -o

111O = ~I(x -X) (Y -y f(x 9 y)
x Y

-i12 0 - 3Ym1 1 2mOZ 2x M1

20 10

p~l-2
x Y

M -27in - -z2 x

*1 - 21 2  11m - .x0 + Zy in 1

10O3 =D3(X-i)(Y- Y) 3f(x, y)
x Y

M n 0 3 - 3ym0 2 + 2ji 0 1 ,

In summation:

1400 = oo, "1= 1in 0 m2

P10 =O 0, "30=m3 Ii 20 -221

%i= 0, 112= M12 2 f l-xTM 0 2 +2i in 1 0

"A2 0 =in 2 0 -xin 10  I4 21=m 21-2im 11 -im 20 +? 2 m 0 1

1102= '" 0 2 - imo1  L 03 =m 0 3 - 3rin 2+ Z2 2M0

The normalized central moments, denoted by n are
pq

defined as:

ff"Ife"P.P -OWI
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1 1 pq

P+q =2, 3....

The normalized central moments are invariant to size

changes as well as translation.

From the second and third order moments a last set of

measurements can be derived which are invariant to proper

and improper orthogonal rotation, and mirror images as well

as invariant to translation, size change.

IP1 = 120+ 1102

2 2

eP3 =(,n13 0- 3 ,n12)2+ (3 -n 1+Tl0 3)

2 2
'P4 (7)30+ 1112) +(112l+ 103)

qP5 = (n 30 - 311)(n3+?l1z)E(1 30+112) Z- 3( 'n21 +103) 2

T) ~1 -7103) ('q2 1 +'n03)r3(I 130+ 1112)' 2 1+n3

+P6 11201(t13o+1 302) 1121+ -1 21n3)3).

A seventh "metric" can be added which will change sign

under improper rotation.

Md*E Q.1 jI:jj;
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=p (3,112 - '1 30)1nI30 + 'I lZ)[( 30+ '112) 2- 3(,j 21+ '103) 2

+ (3th 'lO3)('1z1+ n O3) [ 3( 1130 + 1z) 2-('12+ T03)

4.3.4 Numerical Computation of Moment Invariants

In the previous section, the moments were computed for

a continuous function of continuous variables. For com-

puter implementation, the moments must be computed for a

discrete function of discrete variables. Also, the range

of the moments must be considered. In this section, the

computer representation and numerical computation of moment

invariants will be described.

Any finite set of moments may be computed and stored as

a matrix. For example, the matrix, M, of non-central moments

with p, q less than or equal to 3 is given by:

m 0 0 in0 1 mo Zin 3

M -" -

inZO m~ in2 2 in2 31

-irn 3 0 rn31 in 3 2  m3 3

If an order, n =p+l, is selected, and all moments with n

less than or equal to fixed value is selected, then an upper

triangle matrix is produced. This condition is illustrated

iI
M='

M M., M
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by the elements above the line in the matrix, M. Similar

matrices may be defined for central and normalized moments.

An important question for the computer implementation

of moment invariants is the range of the moments since this

determines the computer storage requirements. The maximum

value of the noncentral moments is easily determined by the

following procedure. Let the objective function, J(x,y), be

given by

J(x,y) = m q

To maximize J subject to the constraint

fff(x,y)dxdy = 1

one may use the method of Lagrangian multipliers:

H = J + X(5Jf(x,y) dxdy - 1).

Equating the partial derivatives of H with respect to x,y and

X to zero, give the conditions

pf(x,y) + xfx (x,y) = 0

qf(x,y) + vf y(X,y) = 0.

Thus, the maximum value of mpq may be expressed as

a -- p -a- f(xy)dxdy.

x y

This expression may be used to determine the maximum value of

a known function, f(x,y). For example, suppose that

f(x,y) = K exp{-x-yl.
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Application of the above formula gives

JMAX P Pqq.

Although the previous expression gives the maximum value

of the moments, it depends on the function. It is sufficient

for computer implementation to use upper bounds for the

maximum value. For a finite rectangular region, easily

computed bounds may be based on the following relationship:

b ds b d

m Pq f P=q~, ~xy1 ~fma x ydxdy

which gives
" f [bP+I -.aP+I dq+l- cq + 1

pq maxL p+1 H q+1 i

A similar upper bound for the central moments is easily shown

to be
lapq f F(b-a)p l rl d - c ) q ~ '

pq max L p+1 L q+1

Lower bounds may be computed in a similar manner.

The computed bounds on the moments may be used to scale

the computer operations, select register lengths, and norma-

lize computed feature values.

Another factor to be considered in the numerical compu-

tation of moment invariants is that since the invariance

properties were proven only for continuous functions, certain

variations should be expected in the discrete case. The

following development shows that these variations do occur

but can be controlled by careful techniques.
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Lemma 1. The moments are invariant under translation of

coordinates provided xo = kAx, yo = ZAY.

Proof: Suppose the density with respect to coordinates x,y is

f(x,y). Let xy' be a translation of x,y:

X' = X - x Y' = Y - YO

for some x0 , yo. Then with respect to the x', y' coordinates,

the density must be f'(x',v') = f(x'+x o, y'+yo)• With re-
0 0

th
spect to the x,y coordinates, the p-q central moment is

~. ~ P, q) X ~ /--~ P
PXqY x) (Y ?'I., AX Ay

th

with respect to the x',y' coordinates, the D-q central

moment is

(x 1 $') er

where of course, Ax' = Ax, Ay' = Ay.

Note that we can index x' such that x' = x - x
n n n 0

iff x0 = kx for some inteqer K. Similarly for Y Hence,

provided that xo = kAx, yo = kAy, then it is readily verified

that

x' =x - X Y' Y- Y (2)

n n
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and

fkxnI 'Y = f (x'+ 0 ' Y'+Y-) f (x M) (3)

and

Px, y pq= pxy(fpq(4

i.e., provided that xo= kAx, yo = Z. Ay, then ji (f,p,q)
x~y

is invariant undre translation of coordinates.

Note: x 0 = kAx, yo = z. Ay is required if (1) , (2) , (3),

(4) are to hold exactly. If x 0 ;6 kAx and/or y 0 ;4 k Ay,

then (1), (2), (3), (4) become approximation and the con-

clusion is only anproximately valid.

Lemma 2. The moments are ao)proximately invariant under simi-

larity transformation.

Proof: We write the moments in the form of

m q

- n 3 , -

m n

(x'Iy P ;)cr

n ,, y ii
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P q /+

=-LL (x) (Y (-1+ f~~xs) (i)~,~ ~ A&

for small variations of x' from xn and y' from ym we will have

m n

00O P oo

So

(110 0 )

where

- p~~q 1  X1nX q xm

f(x ,y d
no YM Yl

The moments are also approximately invariant under

digital rotation withe variation dependent upon the size of

rotation and the interpolation method used.
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4.3.5 Experimental Results for Scene Analysis

To demonstrate the advantages and limitations of moment

invariants for scene analysis the following experiment was

performed. A general segment of an aerial scene was digi-

tized and imbedded into a zero array since the moment compu-

tation depends upon the selected frame size which must be

finite. This image was then reduced in size by a factor of

two by averaging four points into one; inverted in magnitude

modulo 255; mirror imaged, rotated 450 and 2' using nearest

neighbor interpolation. These images are shown in Figure 47.

The corresponding invariant measurements are shown in

Figure 46. The logarithms have been taken of the invariants

to compress the dynamic range. Note that the invariants are

close but not identical for the different transformations of

the original scene.

The main conclusion which can be deduced from these ex-

perimental results is the qreat conformity of the theory with

the empirical results. This suggests moment invariants as a

practical and convenient tool in shape representation and

image registration. At the end point of the calculation one

obtains a set of measurements which are invariant to any

translation, rotation or size change which might occur ix any

picture of a scene due to various factors. The method may

be expanded beyond this extent, i.e. for order p moments,

one has p+l invariant measurements (refer to Section 4.1).

Hence, a large supply of these invariant measurements are

available.
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EXPERIMENTAL RESULTS:

In this part we verified empirically the seven invariant

moments which have been derived from a given scene. The

measurements, shown in Fig. 46 correspond to the pictures in

the following pages respectively.

FINAL INVARIANTS- FINAL INVARIANTS-
6.24993 6.22637

17.18015 16.95439
22.65516 23.53142
22.91954 24.23687
45.74918 48.34990
31.83071 32.91619
45.58951 48.34356

Optical Window Optical Reduced 2

FINAL INVARIANTS- FINAL INVARIANTS-
6.21612 6.91980

16.58215 19.95532
21.79714 26.68924
22.69471 26.90140
44.92849 53.72453
31.22309 37.13457
44.9G914 53.59021

Optical Inverse Optical Mirror

FINAL INVARIANTS- FINAL INVARIANTS-
6.31823 6.25346

16.80396 17.27091
19.72426 22.83652
20.43774 23.13025
40.52568 46.13627
29.31589 32.06803
40.47074 46.01707

Optical Rotation 450 Optical Rotation

Figure 46.

IA
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SECTION V. HIERARCHICAL SEARCH TECHNIQUES

5.1 Introduction

The problem of matching two images of the same scene

taken by different sensors under different conditions is a

challenging problem in scene analysis. The two scenes called

the reference scene and sensed scene may be transformed so

drastically by different data collection geometrics or sen-

sors that it is not possible to match the scenes. However,

in most interesting cases, the scenes can be matched by a

photointerpreter. Only this class of scenes will be consi-

dered. A general approach to matching two scenes involves

locating corresponding regions in the scenes. If several

corresponding regions can be located, then geometric and in-

tensity mappings may be developed to match the scenes. There-

fore, a basic problem is: given a reqion of the reference

(sensed) image, determine its location in the sensed (refe-

rence) image (Fig. 48). The standard computer approach to

this problem is to use the gray levels or a derived image of

the reference region as a template and select the position of

maximum cross correlation between the template at each pos-

sible shift position of the sensed image as the match loca-

tion. Since a template of size M x M can be shifted into
2

(N-M) possible positions in an N x N image as shown in Fig-

ure 1, the number of correlation computations can be extre-

mely large. Fast correlation and edge correlation techniques
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decrease the correlation time at each shift position; however,

these methods still require a computation at each of the (N-
2

M) positions. The purpose of this section is to describe

hierarchical search techniques which are logarithmetically

efficient, i.e. reduce the number of search positions to K

log (N-M).

Although no previous work on hierarchical map matching

has been discovered, several previous experiments on hier-

archical decompositions of pictures have motivated this study.

Klinger and Dyer[l] developed a regular decomposition of

picture areas into successively smaller guadrants resulting

in a logarithmetic search. Tanimoto and Pavlidis [21 also

considered a hierarchical data structure for picture proces-

sing in order to speed up edge detection operations.

Ramaperian [3] also used multilevel search techniques for

edge detection.

Several advantages of a structured approach are apparent.

It is not necessary to examine each pixeL in a high resolution

image to locate a region at high resolution. The selecrivity

of the hierarchical techniques, especially coarse-fine search

methods, is similar to the perceptual operation of the effi-

cient human visual system. The proposed method in which a

match region is obtained at different levels is extendable to

other problems such as edge or object location. The method

provides an arbitrary degree of precision in locating a region

which is limited only by the highest resolution size and the

uniqueness of the match region. Finally, the method permits

.1 1
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an efficient decomposition of the sensed scene into "infor-

mative" and "irrelevant" regions

*-

I .
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II. Coarse-Fine Search Technique

In the hierarchical technique a structured set of

pictures at different resolutions will be used. The high

resolution sensed scene will be denoted, PL(i,j) where for

simplicity

L
i,j = 0,1,2,...,2 - 1

The index L is called the level of the search. The reference

region at level L, QL(i,i) will be assumed to be smaller than

the sensed scene. The agglomerative rule by which the

level K scene is reduced to a level K-1 scene is simple four

point averaging, i.e.

) =0IPK ( 2j) + PK(2 i, Zj+.) + PK(Zi+l, Zi)

+ PK(Zi+l, 2j+)}

K K -

fo r i, j = 0,1,2, .... 2 - I

The reference image region size varies with the level and is

an important consideration. Obviously, objects present at

one level may not be recognizable at a lower level. However,

allowing the reference image size to change alleviates this

problem. When looking for a forest one need not look at the

leaves. A reference match region must be selected for each

level and the performance of the algorithm depends upon the

uniqueness of these reference regions.
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A matching rule must also be specified to guide the

search from level K-I to level K. Several possible match

function such as correlation may be used. The match fun-

tion x y, for x and y should have certain properties,

such as

1. Identity, x _x

2. Symmetry, if x _y then y-x

3. Shift invariance, if x-y then x+a y+a where a is a

constant vector.

4. Scale invariance, if x y then Ay where is a scalar.

5. Rotation invariance, if x -y then T x .y where T is

a transformation matrix.

6. Sensor invariance, if x v then t(x),.y where t is

the sensor transformation.

The vectors x and y may be the gray level values or derived

measurements from corresponding sensed and reference regions.

Note that normalized correlation satisfies properties 1-4

but not 5 and 6. Invariant measurements such as moment in-

variants used with normalized correlation satisfy properties

1-6. Certain derived functions such as edges or sensor cor-

rected images used with invariant measurements and norma-

lized correlation may satisfy all the properties. Also, note

that other properties such as invariance to weather or even

man made changes may be desirable.

A specific example which illustrates a coarse-fine

search will now be considered. A quadrant tree will be used

for decomposition of the sensed scene as shown in Figure 49.
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The efficiency of a quadrant subdivision algorithm for a

coarse-fine search is illustrated in Figure 50. Location of

an element in an N x N array, requires only log2N steps.

One of the prominent features in cross-correlation graphs

is the differences in the location of the peak when one ob-

tains cross-correlation of radar picture against the corre-

sponding optical picture, and the cross-correlation of the

optical picture against the corresponding radar picture. This

phenomenon can be explained fully by noting the existing

misregistration of the two images.

Consider two functions f(x,y) and h(x,y). The correlation

function of these two can be defined as:

C( ,B = ff (x y) h(x + a y + )dx y

-00
Now suppose there is another function h(x,y), which is the

translated version of h(x,y). Then:

h' (x,y) = h(x-a,y-b)

where a, b are relative distances that has been translated.

The value for correlation in this case would be:

00
C'(aB)= f(xy) h'(x.y) dx. dy

C'(a,) -- (xy) h(x + -a, y+/8-b) dx dy
-. 0

-c(a- 8b
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Hence one concludes that the new correlation function is just

the translated version of the original correlation. The

radial dislocation is then

d = /a
2 + b2

Now if f'(x,y) is the translated version of f(x,y), i.e.

f'(x,y) = f(x-a', y-b')

then

00

C', ( = /f(x-a', y-b') h(x+a-a) (y+.B-b) dx dy

-00

Now

x= a' = x' y - b = y'

then

x =x' + a' , y = y' + b'

00
C11 (a .8) =ff~x'y') h(x'+a'-a+a, y'+b'-b+p) dx' dy'

-00

or

C" (c.e) C (01+a'-a. .8+b'-b)

Hence the relationship of this new corre-ation when both

f(x,y) and h(x,y) are translated is just the translated

version of the original correlation.

Conclusion:

In the situation of the correlation graphs that was

referred before we have

a' = -a, and b' = -b
i.
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henc e

C' (Ce' i C (CV-?Za. .8-2b)

then the radial distance of C with respect to C" is
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5.2 EXPERIMENTAL RESULTS

A sequence of experiments were performed to investigate

the zoom technique for actual images. The simple 4 for 1

averaging was used for the agglomerative step. An inves-

tigation was made of the size reduction allowable for matching

of the large and small stadium regions for both the optical

and radar images. Correlation was used as the measure of

similarity and a resolution which permitted a significant

correlation peak was taken as adequate. Another experiment

using a derived edge picture and moment invariants was also

performed. Vinally, an example is oresented of selecting

moment measurement from the optical regions for location of

the match position in the radar image at various resolutions.

The first sequence of experiments were performed to

verify the basic concept of the zoom technique. The geome-

trically corrected optical image scanned at 256 x 256 reso-

lution was reduced to 128 x 128, 64 x 64 .and 32 x 32. A

similar sequence was produced for the intensity corrected

radar image. The following experiments were done:

Step 1:

A 64 x 64 optical picture was divided into four equal

major regions. Then the invariant moments of the picture

were used as a means of representing the picture. The top

riqht window with (1,1) coordinates was then used as a

referenced region and the correlation function of this

sensed region with the whole picture was obtained. The

reference region was moved pixel by pixel across the whole
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sensed picture and thus the shown correlation function was

obtained. The window size was 32 x 32.

Step 2:

The selected region in step one was enlarged to 64 x 64,

then this picture again was divided into four equal regions.

The reigon with the coordinate (33, 33) was selected and,

using a similar procedure as in step one, the correlation

funciton was obtained.

Step 3:

A similar procedure as in step 2 was performed, with

the exception of the selection of the region, which in this

case was with the coordinate (1,1). The obtained correla-

tion function is shown.

In all the pictures shown, the photograph corresponds

to the next largest square, which contains the shaded region.

For example, in the Figure 51, the photograph corresponds to

the square which is labeled c' in the large square.

The resulting correlations for the optical image are

shown in Figures 51, 52 and 53. The corresponding experi-

ment for the radar images are shown in Figures 54, 55 and 56.

1',jii j i i
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SECTION VI. SCENE CONTENT MEASUREMENTS AND RECOMIMENDA-
TIONS FOR FUTURE WORK

The general problem of map matching of images of the same

scene taken under different conditions with different sen-

sors was considered in detail during this study. Several

innovative approaches and concepts were investigated and de-

monstrated by experimental computations on images from optical

and radar sensors. Among these were:

Techniques of geometric and sensor intensity correc-

tions

• Hierarchical search for image registration

• Extraction of invariant features and invariant feature

correlations

• Edge extraction and edge correlations

Since most correlation techniques work well on locating

a region from an image, one approach to map matching of two

different images is to develop inverse transformations to make

the images appear as a region from one image. This general

transformation depends upon both sensor and imaging characte-

ristics and is difficult if not impossible to determine.. How-

ever, it was possible to develop simple approximations which

rectify not only the geometric but also the intensity of

two arbitrary images. A "map warping" approach which involves

a two dimensional polynomial mapping from corresponding

points in the two images was used for geometric corrections.

A new technique based upon the Karhunen-Loeve transformation

was used to determine a principal component of the image with
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a corrected intensity distribution. This approach is an

example of a class of intensity matching transformations

which because of their effectiveness and simplicity may be-

come important techniques for map matching. These techni-

ques only require that intensity statistics be assumed or

experimentally determined. Other information that could be

obtained about the scene, such as object composition or

height, would permit the develop of more sophisticated methods.

Hierarchical search techniques for image registration

were introduced in this report and promise to be a highly

efficient and effective method for map matching. An impres-

sive feature of these methods is logarithmic computational

efficiency. A special case of the hierarchical techniques

permits a "zoom" to be used to locate an object of interest.

That is, an image can be searched at low resolutions and a

region is located approximately. Then the approximation can

be refined to any desired level by investigating selected

regions in higher resolution images. The hierarchical tech-

nique was demonstrated for locating regions from an optical

image in an optical image, regions in a radar image in a

radar and regions of a radar image in an optical image. The

matching of radar and optical image requires the extraction

of measurements which are invariant to sensor and geometric

distortions. This requirement led to the study of invariant

measurements.
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Certain measurements have a high degree of invariance

to the types of geometric and sensor transformations produced

in optical and side looking radar imaging. Moment measure-

ments of the image intensity can be transformed into a set of

invariants which are invariant to translation, rotation, scale

and other transformations. These invariants were computed

and used as measurements in correlation experiments. It was

noted that due to the digital nature of the computation the

measurements were only approximately invariant but did work

quite well for map matching optical and radar images.

Edge structure also remains invariant to many sensor

transformations and thus edge correlation for map matching

was also considered in detail. A new decomposition method

for 3 by 3 windows was developed and used for edge detection.

Although edge structure is very invariant to sensor trans-

formations, the edge correlator may be sensitive to geometric

transformations depending uoon the edge detection technique.

Experimental optical-radar correlations were performed to

demonstrate the efficiency of the edge correlation approach.

A common problem encountered in all correlation methods

is a sensitivity of performance to the content of the scene.

This phenomena was demonstrated in several examples and

requires further investigation.

Each of these techniques and developments have been

successfully applied to alimited set of images. The use of

a limited number of images was necessary at this time in order

to provide a well-defined environment for the development
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of the basic techniques.

To demonstrate the true usefulness of these approaches,

they must be applied to many scenes of interest. Therefore,

it is recommended that the following work be performed:

1. Establish the performance of these approaches to

sequential map matching using hierarchical search,

edge features, and structured invariant moments with

respect to terrain and type.

2. Identify the types of scenes and features which are

best suited for these approaches.

3. Perform theoretical and experimental statistical

analysis on these approaches and determine suita-

bility of these approaches to the perturbed scenes.

4. Verify the validity of experimental performances

through statistical analysis.




